Living in Peace and Wisdom on our Planet

  My Profile  Log In   Register Free Now   
Living in Peace and Wisdom on our Planet Planet Thoughts Advanced       Click to see one of our videos, chosen at random from the database, along with its PlanetThought
 Try a video
Home   About   Books&Media   Resources   Contact  
   News   Quote   Review   Story   Tip   All   Blogs   News   Quotes   Reviews   Stories   Tips
Get Email or Web Quotes
or use our RSS feeds:
New Feed:  Fossil Fuel
 Full  Blog  News
Read & Comment:
A Solar Community In Isr...
'Let's You And Him Fight...
Paul Krugman's Errors An...
Why Climate Change Is An...




Most recent comments:
From Farm To Fork
A Simple List: Things We...
Can the affluent rest at...

Actions:
Bookmark the site
Contribute $
Easy link from your site
Visit Second Life
Visit SU Blog





News item: Solar Funnel

    Email a Friend     See Related

0 comments   Add a comment   Contributor:  TheTeam (Sep-23-2010)
Optimism: 4 Categories: Economic/Financial, Renewable Energy Sources

This filament containing about 30 million carbon nanotubes absorbs energy from the sun as photons and then re-emits photons of lower energy, creating the fluorescence seen here. The red regions indicate highest energy intensity, and green and blue are lower intensity. Image: Geraldine Paulus New antenna made of carbon nanotubes could make photovoltaic cells more efficient by concentrating solar energy.

By Anne Trafton, MIT News Office

Solar cells are usually grouped in large arrays, often on rooftops, because each cell can generate only a limited amount of power. However, not every building has enough space for a huge expanse of solar panels.

Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.

"Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and leader of the research team.

Strano and his students describe their new carbon nanotube antenna, or "solar funnel," in the Sept. 12 online edition of the journal Nature Materials. Lead authors of the paper are postdoctoral associate Jae-Hee Han and graduate student Geraldine Paulus.

Their new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes. The work was funded by a National Science Foundation Career Award, a Sloan Fellowship, the MIT-Dupont Alliance and the Korea Research Foundation.

From light to energy

Solar panels generate electricity by converting photons (packets of light energy) into an electric current. Strano's nanotube antenna boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.

The antenna consists of a fibrous rope about 10 micrometers (millionths of a meter) long and four micrometers thick, containing about 30 million carbon nanotubes. Strano's team built, for the first time, a fiber made of two layers of nanotubes with different electrical properties — specifically, different bandgaps.

In any material, electrons can exist at different energy levels. When a photon strikes the surface, it excites an electron to a higher energy level, which is specific to the material. The interaction between the energized electron and the hole it leaves behind is called an exciton, and the difference in energy levels between the hole and the electron is known as the bandgap.

The inner layer of the antenna contains nanotubes with a small bandgap, and nanotubes in the outer layer have a higher bandgap. That's important because excitons like to flow from high to low energy. In this case, that means the excitons in the outer layer flow to the inner layer, where they can exist in a lower (but still excited) energy state.

Therefore, when light energy strikes the material, all of the excitons flow to the center of the fiber, where they are concentrated. Strano and his team have not yet built a photovoltaic device using the antenna, but they plan to. In such a device, the antenna would concentrate photons before the photovoltaic cell converts them to an electrical current. This could be done by constructing the antenna around a core of semiconducting material.

The interface between the semiconductor and the nanotubes would separate the electron from the hole, with electrons being collected at one electrode touching the inner semiconductor, and holes collected at an electrode touching the nanotubes. This system would then generate electric current. The efficiency of such a solar cell would depend on the materials used for the electrode, according to the researchers.

Strano's team is the first to construct nanotube fibers in which they can control the properties of different layers, an achievement made possible by recent advances in separating nanotubes with different properties. "It shows how far the field has really come over the last decade," says Michael Arnold, professor of materials science and engineering at the University of Wisconsin at Madison.

Solar cells that incorporate carbon nanotubes could become a good lower-cost alternative to traditional silicon solar cells, says Arnold. "What needs to be shown next is whether the excitons in the inner shell can be harvested and converted to electrical energy," he says.

While the cost of carbon nanotubes was once prohibitive, it has been coming down in recent years as chemical companies build up their manufacturing capacity. "At some point in the near future, carbon nanotubes will likely be sold for pennies per pound, as polymers are sold," says Strano. "With this cost, the addition to a solar cell might be negligible compared to the fabrication and raw material cost of the cell itself, just as coatings and polymer components are small parts of the cost of a photovoltaic cell."

Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon. The nanotube bundles described in the Nature Materials paper lose about 13 percent of the energy they absorb, but the team is working on new antennas that would lose only 1 percent.

Reprinted with permission of MIT News

See original news item: MIT News Office  
Related PlanetThoughts.org reading:
  International Olympic Committee And Dow Chemical... (Jan-27-2011)
  Voyage Around The Globe With World's Largest Sol... (Oct-3-2010)
  Portugal Now Gets 45% Of Its Electricity From Re... (Aug-15-2010)
  President Obama Awards $2 Billion For Solar Power (Jul-8-2010)
  Total Surface Area Required To Fuel The World Wi... (Jan-30-2010)
  Hacked Emails And Accusations Of Climate Change ... (Dec-6-2009)
  Climate Interactive: The Bridge to Copenhagen (Nov-13-2009)
  Top 10 Solar Technologies to Watch Out For (Oct-18-2009)
  "You'll have solar powered bulldozers, solar powe..." (Sep-22-2009)
  Solar Blimp Could Fly from NYC to Paris; Rests o... (Jul-28-2009)

Click one tag to see readings related specifically to that tag; click "Tags" to see all related readings
  
^ top
Add a comment    
  Follow the comments made here? 
  (Please log in or register free to follow comments)

  
^ top 
About contributor Member: TheTeam (PlanetThoughts Team) TheTeam (PlanetThoughts Team)

Member: TheTeam (PlanetThoughts Team) The volunteers of PlanetThoughts.org are happy to give you their best selection of news, opinion, reviews, stories, quotes, tips, and more. We hope you enjoy the reading... and thinking. Thanks!

Love your Planet... Know your Planet.

Visit Green Wave Email Marketing
Email Marketing for You and Your Planet


We won a Gotham Green Award for 2010, on Earth Day! Thank you Gotham Networking for this award.

See the attractive event brochure.

Recommended Sites

  Member of:
GOtham Green networking
Green Collar Economy
New York Academy of Sciences
Shades of Green Network

  PlanetThoughts
     Members/Affiliates *

Approaching the Limits
    to Growth
EcoEarth.Info
Environmental News Network
EESI.org
GreenBiz.com
GreenHomeBuilding.com
Heroin and Cornflakes
NewScientist
ScienceDaily


* Members of PlanetThoughts      
  communities on SU or MBL,      
  and blog article affiliates      

  Other Favorite Blogs
21st Century Citizen
Center for Bio. Diversity
Easy Ways to Go Green
EcoGeek
Good Bags
Opposing Views


Valid my RSS feeds


We Do Follow

ClickBlog.org



  Volunteer      Terms of Use      Privacy Policy  

Copyright © 2024 PlanetThoughts.org. All Rights Reserved.
Except for blog items by David Alexander: Some Rights Reserved.